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A graphical representation of Weisskopf-Wiper type 
theories 
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Sektion Physik der Universitat Munchen, Theoretische Physik, 8000 Munchen 2, There- 
sienstrasse 37, West Germany 

Received 4 March 1976, in final form 7 February 1977 

Abstract. It is shown that the usual (non-existing) Hamiltonian operator H’governing the 
interaction of a one-electron atom with transverse photons, can be written as the sum of a 
finite number of self-adjoint and bounded ‘partial’ interaction Hamiltonians L, where each 
L has a well defined physical meaning. The simplest of the well known Weisskopf-Wigner 
type theories which are used occasionally, are defined by a single L and practically all model 
Hamiltonians used in quantum optics are closely related either to a single L or to sums of 
very few L. The systematic ‘Weisskopf-Wigner approximation scheme’ introduced previ- 
ously consists of special sequences of partial sums of L. We equip the system of partial sums 
of L with a system of graphs where each graph defines uniquely a certain Weisskopf-Wigner 
theory and visualises its physical content in a comparable way to a Feynman graph. Finally 
some applications are given. 

1. Introduction and discussion of the main results 

We have shown recently (Grimm and Emst 1974, 1975, to be referred to as I and 11) 
that the idea of the important state hypothesis, first used by Dirac (1927) and Weisskopf 
and Wigner (1930), can be appreciably generalised. This has led us to a self-reliant 
hierarchy of Weisskopf-Wigner approximations or ww theories for the treatment of 
the interaction of a one-electron atom A with the radiation field R of transverse 
photons. The idea of this approach is essentially to consider an increasing number of 
the possible states of A + R as ‘important’ till the ‘exact’ theory is reached in the formal 
limit, when all possible states are admitted as ‘important’ (see below, however). The 
corresponding mathematical scheme is characterised by the existence of a unitary 
time-evolution operator U&) in any finite-order ww theory, and, under certain 
conditions, in some infinite-order ww theories as well. The unitarity of U&) excludes 
‘infinities’ in the corresponding ww theories. 

In the present paper we describe a modification of this approach which offers a 
number of advantages. The first of these advantages is as follows. The usual interaction 
Hamiltonian H’ of the system A + R  is basically the restriction of the ‘minimal’ 
interaction Hamiltonian e d3x A ”(x)t&)y&(x) of quantum electrodynamics (QED) 
to transverse photons and to one bound electron (cf 0 2 with the necessary notation 
etc). We show in 0 3 that H’ can be written in the form: 

m m m  

n-0 b-0 a=O 
H’= L[(b,n)#(a,n+l)]. (1) 
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L[(b,  n)*(a, n + l)] is a self-adjoint and bounded partial Hamiltonian operator on the 
Hilbert space Y1  of the interacting system A + R  for any (n ,  b, a ) €  
No x No x No(No := (0, 1, . . .}). So any partial sum Z of any finite number of L is again a 
self-adjoint and bounded partial interaction Hamiltonian on 9 1 .  The sum of the ‘free’ 
Hamiltonian H“ and any Z is again self-adjoint. Results of I can be reformulated in the 
sense that @+ Z is self-adjoint again if the photons are equipped with any mass p > 0 
and if Z is obtained from equation (1) by restricting the sums over b and a (but not n) to 
any finite domain 0, . . . , A. 

The decisive advantage of the expansion (1) is that each L may be interpreted 
physically: L[(b, n)*(a, n + l)] is the interaction Hamiltonian of a class of well defined 
physical processes, namely the ‘transitions’ from any state of R with n photons and A in 
the eigenstate ub(x)  to any state of R with n + 1 photons and A in the state U,@), and 
vice versa. For example, the simplest ww theory (e.g. KallCn 1958,II) of a transition 
ub(x)* u,(x) under emission or absorption of one photon is obtained by retaining only 
one single term L[(b, O)z=k(a, l)] in equation (1). Such crudest, lowest-order ww 
theories allow the prediction of natural lifetimes of atomic states and of linewidths in 
spontaneous emission and resonance fluorescence which, in all cases considered so far, 
agree with experience. In particular, all selection rules of the Dirac atom can be 
explained by such crude one-term ww theories. It is shown (0 5 )  that practically all 
model Hamiltonians used in atomic physics and quantum optics are related with one, or 
at most several terms of equation (1). 

A third advantage therefore is that partial sums X can be interpreted correspond- 
ingly. They refer to compound processes, i.e. to sums of the elementary one-term 
processes contained in Z. However, in general these processes must compete with each 
other because, due to unitarity of U I ( ~ )  = U&) the sum of all transition probabilities is 
equal to one for any 2. The addition of a new L to a given X always opens a new 
‘reaction channel’ for A + R because the new processes are now acknowledged, but they 
must of course compete with those already contained in 8. This can lead to novel 
‘melting effects’ (0 6). 

It is in fact the main purpose of this paper to give an easy access to higher-order ww 
theories. We achieve this by introdhcing in 0 4 a graphical representation of the ww 
theories defined by the partial sums X of equation (1). Each ww theory which is so 
defined will be described by a certain graph which, comparable to a Feynman graph, 
visualises the essential features of the ww theory represented. We set up rules (0 4) 
which allow us to write down immediately the equations of motion of this ww theory, 
As the essential physical content is displayed by the graph we can thus write down ww 
theories for any purpose. To become acquainted with this graphical language, we 
discuss in 0 5 the graphs of several known ww theories. In 0 6 we apply this method to a 
ww theory which describes a special case of the above competition. In § 7 this will lead 
us to the simplest ‘infinities’ that can occur in ww theories of infinite order. We 
compare them with certain divergences known from second-order perturbation QED. 

It is natural to ask for the ‘convergence’ of the expansion (1). In comparable models 
of Nelson (1964), Eckmann (1970), Gross (1973), Frohlich (1973), Schroeck (1973, 
1975) with ‘unrenormalised’ Hamiltonians H,, sharing the existence of a persistent 
electron vacuum with our H“ + H’, it was essentially shown that H,, can be written in 
the form H,, = Hren  - EC where Hren  is self-adjoint and bounded from below and Ec is 
some infinite constant. This is achieved in all cases by modifying H,, by some cut-off 
procedure C to get a self-adjoint ‘cut-off Hamiltonian’ er, and by then removing the 
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cut-off. Taking partial sums 2 of equation (1) certainly resembles a cut-off because our 
cut-off Hamiltonians @+ 2 are also self-adjoint and bounded from below. But there is 
a fundamental difference in that we know that each I: defines a class of characteristic 
processes which retain an autonomous physical meaning even if they have to compete 
with other processes which are ‘admitted’ as more and more of the L are taken into 
account. We repeat that even the crudest one-term ww approximations lead to 
agreement with experience whereas the finite cut-off s used in the constructive field 
theory are not closely comparable to experience and must be removed. The necessity 
of including all terms of equation (1) is not so obvious. In fact, it may be questioned by 
physical arguments derived from the direct interpretation of the 2, as follows. 

Consider a single one-electron atom A. The ‘diameters’ of the eigenstates of the 
non-relativistic hydrogen atom tend to infinity as the ionisation limit is approached 
from below (e.g. Weizell958). The same can be expected of our A in the limit a + 00, cf 
0 2. But we never observe one single atom as measurements are always made on some 
ensemble of atoms; for example, active atoms in a laser, or atomic beam, or interstellar 
matter, etc. Whichever situation we consider we must admit that the states u,(x) with a 
greater than some ‘overlap value’ a* cannot play a decisive role, because the states of 
two atoms would finally overlap. However then the two electrons are subject to the 
Pauli principle which plays no role at all in our case. But we know that only the 
L[(b, n ) $ ( a ,  n + l)] with a >a*  and/or b > a * ,  whatever a* might be, can lead to 
divergences. Divergences in our theory therefore always come from physical proces- 
ses which can never occur or play any role in any real situation considered. In other 
words the model reaches its limits of applicability long before infinities can occur. In 
our case it is the authority of the Pauli principle that comes into play before infinities can 
appear. Rephrasing this again, the ‘surrounding effects’ upon A are always more 
important than the physical processes that cause divergences in the atom-photon 
interaction. The only realistic conclusion to draw from this can be that terms L[(b, n)* 
(a,  n + l)] with a and/or b greater than a* must be omitted, in which case no infinities 
can occur at all. 

This does not question the need for some renormalisation which in the present case 
must deal with the proper handling of the phenomena of ‘bound’ photons characteristic 
of ww theories (I, 11). We are content here to collect some of the facts which must be 
taken into account in any renormalisation. 

2. Formal definition of the Hamiltonians of our problem 

We inspect first the necessary background material and introduce the inevitable 
notation etc. 

As in I we consider a slightly modified one-electron Dirac atom A with a complete 
set of ‘electron’ eigenstates U, (x) corresponding to a discrete, unbounded energy 
spectrum E, > 0. It will be convenient to assume that the eigenstates are numbered 
throughout so that each number a = 0, 1 ,2 ,  . . . corresponds to precisely one u,(x), and 
to assume Eb 3 E, for b > a. A shall interact with R by the transverse part eAJ of the 
usual minimal coupling density eAJ” of QED. To control certain infrared problems we 
equip the photons with an arbitrary mass p 3 0, as in I. Since the total Hamiltonian 
resulting from this assumption commutes with the electron number operator, the theory 
‘decays’ to a countable number of sub-theories, one for each number of electrons. As in 
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I we consider the one-electron theory defined on the Hilbert space: 
w o o  

9 1  := z:, 0 .Fp= @ @ x. 
a=O n-0 

Xi, is the Hilbert space spanned by the electron solutions of the Dirac equation, .Fp is 
the Fock space of transverse photons, and X; denotes the Hilbert space of all states of n 
photons with A in the state u,(x). The elements of %$ will be denoted by la;) or 
( Y ; ( K ~ ,  , . . , K ~ ) ,  whichever is the more convenient. ( Y ; ( K ~ ,  . . . , K,,) is a c-number €or 
n = 0, while for other values of n it is a c-number-valued, symmetric, square integrable 
function of n arguments K ~ ,  , . . , K,,, where K = (k, A )  comprises wavevector k E R3 and 
polarisation index A E {1,2}. Norm and scalar products on Z are defined by 

(@:la:) := J d 3 ~ 1 . .  . J d3K,@;(K1,. . . , K , ) * ( Y : ( K ~ ,  . . . , K,,), (3) 

the symbol 5 d 3 ~ .  , . comprising the elementary Lebesgue integration over k E R3 and 
the summation over A ~ { 1 , 2 } .  ‘Square integrability’ is defined accordingly. Finite 
direct sums of X: are defined as usual (e.g. Achieser and Glasman 1968) whereas the 
infinite direct sum in equation (2) is understood to be the Hilbert space completion of 
the set of arrays {CX:(KI,. . . , K,)} with a finite number of elements ( Y ; ( K ~ ,  . . . , K ~ )  

(Prugovecki 1971). An element of Y1 will be denoted by la) or { C Z ; ( K ~ ,  . . . , K,,)}, the 
latter being short for the set { C U ; ( K I ,  . . . , K,,); (a, n ) E  N o X  NO} of ‘components’ 

Under the above assumptions on the interaction of A and R we find formally, as in I, 
CX:(K1,. . . , K n )  Of la). 

the equations of motion: 

+ ( n  + 1)l” f J d 3 ~  W ( a ,  b ;  K ) C X ” , I ( K ,  K I ,  . . . , K n ;  t )  
b=O 

w n  

b=O v = l  
(4) +n- l / ’  1 M(b, U ;  K,)(Yn-l(K1,. b . , K , - i ,  K v + i , .  . . , K n ;  t )  

where W ( K )  := ~ ( l k l )  := (k2+p2) l / ’ .  M(a, b; K )  is the complex conjugate of: 

W ( a ,  b ;  K )  := d3x e”u;(x)aub(x), 
(2W(K)(2T)3)1/2 

where e is the electromagnetic coupling constant, Q ( K )  denotes two unit polarisation 
vectors orthogonal to k and to each other for A = 1,2, and (Y is the usual vector of Dirac 
matrices. We showed in I that W ( a ,  b; K )  is square integrable in the sense of equation 
(3) for any couple u,(x), of eigenstates of the Dirac atom with the pure Coulomb 
potential. We shall assume that this holds throughout the paper because it guarantees 
the boundedness and self-adjointedness of the terms in (1). Equations (4) have to be 
solved simultaneously for all pairs (a, n )  E NO X No under initial conditions 

a E ( K 1 ,  * * 9 Kn; O ) = X E ( K I ,  * 7 Kn), (6) 

the x;(K1, . . . , K, )  being the components of any unit vector I X ) E  Y1. 
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The right-hand side of (4) defines, formally, the total Hamiltonian H to be 
considered. The first term on the right-hand side defines the Hamiltonian of the 
non-interacting system. It can obviously be written as a direct sum of multiplication 
operators on 2% 

Since all these operators are self-adjoint, but not bounded, H" is also self-adjoint and 
not bounded. (Each multiplication operator 'generates' on a one-parameter group 
of unitary operators; the direct sum of these unitary operators is unitary on Yl so that, 
by the theorem of Stone (e.g. Yosida 1968), there exists a self-adjoint generator H". 
This is the precise definition of H" by equation (7). 

The second and the third terms on the right-hand side define formally the interacting 
Hamiltonian N' to be analysed here. 

3. Representation of the interaction Hamiltonian I€ by an infinite sum of bounded 
self-adjoint operators 

We show now that H can be written in the form of equation (1). 
For this we define an operator L[(b, n)*(a, n + l)] by 

L[(b, n)*(a, n + l)] := iiI[(b, n )  + (a ,  n + l ) l p ~ + l  + i z + l S [ ( a ,  n + l ) t ( b ,  n)]pf : ,  (8) 

where p z  is the 'projector' that maps any element { ( Y : ( K ~ ,  . . . , K , ) }  of Y1 onto its 
component ( Y ~ ( K ~ ,  . . . , K,,) in the space Z'z, and iz is the injection operator which 
identifies any element a z ( ~ 1 ,  . . . , K,,) of &PE with that vector {Pb,(~1,. . . , K,)} of 9'1 

which has components P ~ ( K ~ ,  . . . , K,,,)= 0 for all (6, m ) #  (a, n) ,  and the component 
( Y : ( K ~ ,  . . . , K, , )  for (b, m)= (a, n) .  We have the formal relation 

p:ib, = &b&m. (9) 

Also I[(b,  n ) t  (a, n + l)] is the integral operator which maps X:+l into X f :  by 

L[(b, n)*(a, n + l)] is obviously defined everywhere on Y1 if all M(a,  6; K )  are 
square integrable, as assumed. We claim that it is also symmetric, i.e. that 
( a l L [ ( b , n ) ~ ( a , n + l ) ] ~ a ) i s r e a l f o r a n y ~ a > = { a r ~ ( ~ ~ , .  . .  , K , , ) ) E Y ~ .  
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= I d 3 ~ 1  . . . I d3Kn ab,(~1, . . . , ~,)*(n + 1)1’2 I d 3 ~  W(6, U ;  K )  

It poses no problem to verify that the second term is the complex conjugate of the first 
term so that the sum is real.) 

But, if L[(b,  n)% (a, n + l)] is definedeverywhere on Y1 and is symmetric, it is bounded 
and self-adjoint on Y1, by well known theorems (e.g. Yosida 1968). 

Finally we have to show that the sum H of the L, as defined in equation (l), is 
identical with the interaction terms on the right-hand side of equation (4). For this we 
compute formally the expression pEH(a) for any la) E Yl. We have 

The last expressions have been obtained using equation (9). They are easily identified, 
formally, with the interaction terms on the right-hand side of equation (4). 

It is clear that all procedures carried out are permitted if the sum in equation (1) 
converges. Otherwise we have carried out only formal procedures. Still, because of its 
transparence, we take the sum (1) as the final definition of H’; the L are well defined 
(and harmless) operators. 

4. Graphical representation of Weisskopf-Wiper theories 

To learn more about the physical content of the partial sums of equation (1) we work out 
a graphical representation which is at least as illustrative as the representation of certain 
elements of the S matrix by Feynman graphs. 

For this we consider first a two-dimensional array of ‘circles’, one for each pair (a, n )  
(figure 1, considered without the lines (a)+)). Each circle (a, n )  represents, firstly, the 
Hilbert space Xt; a given set I = {(a, n)} of circles represents the Hilbert space 

and the full array of all circles represents the Hilbert space 9’1 of our theory. Secondly, 
the circle (a, n) symbolises the multiplication operator on Xt with the function 
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’ \ la1 
lIdy O O 

0 0  0 0  

0 1 2 3 1 -  5 
n 

Figure 1. Section from the full array of ‘circles’ with ‘lines’ inserted for the following 
simplest ww theories: ordinary Bohr transitions are represented by ( a )  in the presence of no 
photons and by ( d )  in the presence of two photons; ww theories of the self-interactions of 
the states ~ ( x )  and u ~ ( x )  are represented by (6) in the presence of no photons and by ( e )  in 
the presence of two photons; (c) and (f) correspond to virtual transitions in the presence of 
no photons and two photons, respectively. 

( w ( K ~ ) +  . . . + w ( K , ) + E , ) .  Correspondingly a set I = { ( a ,  n ) }  represents the direct 
sum: 

of such operators, and all the circles together represent the Hamiltonian H“ of the 
non-interacting system. 

Now choose some circle (b, n )  in the column n and connect it by a straight line with 
some circle (a ,  n + 1) in the column n + l .  This line represents the operator 
L[(b, n ) e ( a ,  n + l)]. If more lines are inserted in this way, we get the graphs of the 
partial sums Z of H ;  H’ itself is obtained by so inserting all possible lines. Note that 
only circles in ‘immediate neighbour columns’ are to be connected. Figures 1-5 provide 
examples of various graphs constructed in this way. Superfluous circles may be omitted, 
as is the case in figures 2-5. 

Consider now some given graph, with a given number of lines inserted according to 
the above rule. Denote with I the set of all circles which are connected to at least one 
other circle. It may happen now that, starting from one circle of I, one can reach any 
circle of I by going along the given lines, or it may be that one cannot reach any circle of 
I. In the former case the graph ‘on I’ will be called ‘connected’, in the latter case 
‘disconnected’. Figures 1 ,3 (0 ) ,  and 4 show examples of disconnected graphs, while all 
the other graphs in the figures are connected. A disconnected graph consists obviously 
of connected sub-graphs. We shall see that disconnected graphs represent independenl 
theories on orthogonal Hilbert spaces so that only connected graphs need to be 
considered. 

Finally, a connected graph may be ‘complete’ if, given I, it contains all lines that can 
be inserted by the above rules, or it may be ‘incomplete’ if some lines are omitted which 
do not yet lead to a disconnected graph. In figure 3, ( A )  shows a complete graph, while 
( B )  and (C) are incomplete graphs. 
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The identification of the ‘lines’ of a graph with well defined terms L[(a,  n)% 
(b, n + l)] of equation (1) define the meaning of a graph completely. The following 
‘rules’ allow us to write down the time-dependent Schrodinger equation of the 
corresponding theory. Consider some given graph on some given I and choose some 
circle (a ,  n )  of I, before proceeding as follows. 

(1) For the circle (a, n) write down the expression: 

(17) ( - I - + W ( K 1 ) +  . d  . . . + W ( K n ) + E a )  a t ( K 1 , .  . . , K n ;  t ) .  
d t  

(2) For each line entering this circle from the left-hand side write down the 
expression: 

n 

u=l  
(18) b M(b, a ;  K u ) a n - I ( K l ,  * * Ku-19 Ku+1, * 9 K n ;  t ) ,  n - 1 / 2  

b being the number of the circle this line ‘is coming from’, and sum over all entering 
lines, i.e. over the corresponding b. 

(3) For each line ‘leaving’ (a, n )  to the right write down the expression 

( n f 1 ) ” * ~ d 3 K M * ( ( l , b ; K ) C I ~ + ~ ( K , K ~ , . .  . , K n i t )  (19) 

and sum over all ‘leaving’ lines, i.e. over b. 
(4) Sum the expressions for the circle (a, n ) ,  for the entering and leaving lines, and 

put this sum equal to zero. 
(5) Write down this equation for any circle (a, n)E I, and consider all these 

equations simultaneously. 
(6) Rules (1)-(5) define a theory in terms of elements la;) of the spaces 92’;. If 

necessary, they may be identified with the elements of .4p1 with the same 92’;- 
components, and with vanishing components elsewhere. So we obtain a theory on Y1. 

The equations given by these rules define the time-dependent Schrodinger equation 
of the Weisskopf-Wigner theory represented by the graph considered. The reader will 
have no problems in ‘deriving’ these equations. For example, the one-line graphs (a ) ,  
(b) ,  (c) of figure 1 represent the equations of motion considered in 11; the graphs of 
figure 3 show the corresponding equations of motion of Emst (1976a, b), and so on. 

If the graph was complete the sum over all entering lines would equal the sum over 
all (b, n - 1 ) ~  I and the sum over all leaving lines would equal the sum over all 
(b, n + 1) E I. The resulting equations of motion are then identical with those of a ww 
theory on slpr as considered in I. If the graph was disconnected, the resulting system of 
equations will also consist of independent sub-systems which are not connected with 
each other. They are actually defined on orthogonal subspaces XI of 9’1.  

5. The physical interpretation of a graph 

We can now see quite well the physical meaning of an ‘isolated line’ (b, n)*(a, n + 1) 
connecting the circles (b, n )  and (a, n + 1). It represents the interaction Hamiltonian 
L[(b, n)a=k(a, n + l)] of a class of mechanisms where, influenced by the presence of n 
photons anywhere in space, the atom A makes a transition from the state ub(x) to the 
state u,(x) and thereby emits a photon in any state. It also represents the inverse 
mechanisms, where, in the presence of n + 1 photons in any state anywhere in space, A 
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makes a transition u,(x)+ ub(x) and thereby absorbs a photon. Figure 1 shows the 
three typical cases that are possible. 

Case 1. For b < a  and hence Ea S Ea the line (b, n)*(a, n + 1) will rise from left to 
right like ( c )  and U). This line represents a ‘virtual’ process because A either ‘jumps’ to 
a state of higher energy under emission or, in the inverse process, it jumps to a state of 
lower energy under absorption of a photon. Both processes, however, are real, and 
comparable to quantum mechanical barrier penetration effects. We have shown in I1 
that they are related with ‘bound photons’. 

Case 2. For b = a we get a self-interaction line like (b) and (e) because A now makes the 
transitions ua(x)%uu,(x) under emission or absorption of a photon. It is clear that 
primarily this photon will be of zero frequency. These processes are also virtual (11) and 
thus related with photon-binding effects. 

Case 3. For b > a we get, in general, lines of ordinary Bohr transitions like ( a )  and (d), 
where, under the influence of n photons anywhere in space, A jumps from a state of 
higher energy to one of lower energy, and thereby emits a photon. Similarly, in the 
presence of n + 1 photons, A jumps to a state of higher energy and thereby absorbs a 
photon. These ordinary transitions occur if an only if Eb -Ea is not too small; otherwise 
the transition is again virtual, cf 11. In particular, transitions between different states of 
the same energy are always virtual. 

The lines may of course be linked together. So we get graphs of compound theories 
describing two or more photon ‘cascades’, competing cascades, round trips and many 
other chains of single processes, as described for simple cases in figure 2. 

The graphs (A)-@) of figure 3 are an excellent illustration of the changes of the 
mathematical and physical structures involved in various ‘orders’ of the familar rotating 
wave approximation, as applied to the interaction of a two-level atom A with photons. 
Graph (A) represents the complete WW theory, defined by the important state 
hypothesis that A be a two-level atom. In this approximation the self-interaction of the 
two states and the virtual transitions between them are still included. Virtual transitions 
are omitted, but self-interaction is retained in graph (B). This is motivated in the sense 

\ 10.3 t 

Figure 2. Graphs of simple ww theories involving only ordinary Bohr transitions. (A) The 
simplest ww theory as treated e.g. by Kalltn (1958) and in 11; ( E )  Graph of a ww theory 
describing the spontaneous two-photon cascade U&)+ u,(x)+ U&), the two-photon 
resonance fluorescence process uc(x)+ U&)+ U&)+ u,(x)+ U&), the one-photon reso- 
nance fluorescence U&)+ U&)+ U&) in the presence of another photon, etc; (C) Graph 
of a theorydescribing the three-photoncascade ud(x)+  u, (x)+ ub(x)+ u,(x)andanyother 
process obtained by any ‘trip’ in the scheme U&)* U,@)% U * @ ) %  u,(x). ( D )  Graph of a 
two-channel theory of competing cascades U&)+ u,(x)+ ug(x)  and ud(x)+  u,.(x)+ U&) 
and several other chains of processes. 
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0 1 2  3 -  

0 1 2  3 -  

Figwe 3. Graphs of ww theories of the interaction of a ‘two-level’ atom with transverse 
photons in various states of the rotating wave approximation. 

of the rotating wave approximation because the omitted terms are ‘more anti-resonant’ 
than those retained. Self-interaction is omitted, but virtual transitions are retained in 
graph (C). In dipole approximation this theory corresponds to the ‘spin formalism’ 
used frequently in quantum optics (e.g. Agarwal 1971,1973) which cannot account for 
the self-interaction. Graph (0) is the incomplete and disconnected graph obtained 
from graph (A) by retaining only the resonant terms. The omission of all anti-resonant 
terms is equivalent to the omission of level shifts of the order of magnitude of Lamb 
shifts (Ernst 1976a). The equations of motion corresponding to graph 3(D) can be 
solved approximately (Ernst 1976b). The decay of the graph in the transitions 
(C)+ (D), (B)+  (0) displays the deep-lying decay of the total interaction process 
between A and photons into many independent partial processes (represented by the 
isolated lines of (0)). This has been interpreted as the actual reason for the common 
experience that atoms cannot be used as ‘linear detectors’ for electromagnetic field 
strengths at optical or higher frequencies. Graph (D) tells us indeed that A interacts in 
independent processes with the n-photon components of the state of R; so it is 
insensitive to photon-number uncertainties to which any linear detector must be 
sensitive (cf Ernst 1976a). 

We learn further that two standard assumptions of quantum optics, namely ‘two- 
level atoms’ and the rotating wave approximation, correspond to certain orders of the 
hierarchy of ww theories. For example, practically all existing theories (e.g. Kimble 
and Mandel 1976) of the dynamical Stark effect contain assumptions equivalent to 
graph 3(D). 

The characteristics of the ww theory represented by figure 4 are bound transverse 
photons in a fully coherent state (I, Ernst 1976a); a generalisation to non-relativistic 
more-electron atoms leads to a prospective quantum theory of the self-energy of these 
electrons and of the Coulomb force acting between them (to be published later). 

Under the conditions of 8 2 the mean number of bound transverse photons is small 
compared with one. Therefore one expects and finds that the main contributions to the 
corresponding binding energies come from the first line L[(a,  0 ) d  (a, l)] of figure 4. So 
one must expect that the lines included in figure 5(A) account mainly for the binding 
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Figure 4. Graphs of all self-interaction processes of the states of an atom. A single 
‘horizontal cascade’ leads to a coherent state of bound photons with binding energies 
causing shifts of the atomic levels of the order of Lamb shifts, cf I, Ernst (1976a). The theory 
defined by all horizontal cascades is the ‘direct sum’ of those corresponding to the single 
theories. 

A 

Figure 5. Graphs of the ww theories of the two-level complexes 2 S l 1 2  and 2P1,* and of the 
four-level complex 2SlI2+ 2PII2.  

energies of transverse photons bound to the 2S1/2 and 2P1/2 two-level complexes. The 
difference of these binding energies is about 1064MHz, to be compared with the 
experimental 2S1/2-2P1/2 Lamb shift separation of approximately 1057 MHz (11). The 
full ww theory of the 2S1/2-2P1/2 four-level complex, figure 5(B), leads to the following 
results (Grimm 1976). The familar 2S1/2-2P1/2 degeneracy of the Dirac atom is 
removed at around 1064 MHz, while the spin degeneracy of both 2S1/2 and 2P1/2 is 
retained. 

6. A Weisskopf-Wigner theory of competing ordinary and virtual transitions 

We now discuss in detail the ww theory defined by figure 6 ( a ) .  We are mainly 
interested in its dependence on the number of lines A + 1 < 0;) which are included. The 
figure immediately illustrates that there is a special case of ordinary Bohr transitions if 
A < B, and that virtual transitions come into play if A > B. We look here at the 
resulting ‘competition’, cf 6 1. The limit as A -* 0;) and another more important reason 
for our interest in this particular ww theory are given in 5 7. 
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The rules of 5 4 provide the time-dependent Schrodinger equation of this ww theory 
(we assume cc. = 0 and put W ( K )  = IkJ = k): 

A 

(20a 1 i -af( t )=EBaf( t )+ d 1 [ d 3 ~ M * ( B , U ; ~ ) a ; ( ~ ; t ) ,  
d t  a=O 

a = 0 , 1 , .  . . , A .  (20b) 
d 
dt  i-a?(K; t ) = ( E a + k ) ( Y ~ ( K ; f ) + M ( B , U ; K ) a f ( t ) ,  

The Hilbert space of the theory is XI = X f O e O  . . .OX? with elements jar) = 
{a;; ~ Y ( K ) ,  , . . , a ? ( ~ ) } .  The Hamiltonian @, for the case with no interaction, is 
obtained by putting M(B, a ; K )  = 0 for any a. The total Hamiltonian @ + X is given by 
the right-hand side of equation (20). 

It is frequently convenient to compare the spectra of @ and @ + 2. In our case @ 
has a continuous spectrum extending from E = EO to E = CO and an eigenstate I(B, 0)) = 
(1; 0, .  . . , 0) at E = EB. We assume, in general, EB >Eo (cf figure 6 ( b ) ) .  We are 
interested in the perturbation of this spectrum by X. It is shown in 0 8 that @ and 
@+X have the same continuous spectrum (figure 6(c ) ) .  The theorem says nothing 
about the eigenvalues of @ + C which must be analysed separately. 

For reasons of comparison we first compute the correction 6EG of the energy E B  of 
the eigenstate of @ by formally applying the perturbation theory to equation (20). 
First-order corrections vanish, so to second order we get: 

The sum over Iz) covers all eigenstates of @ except I(B, 0)). To make the formula 
applicable at all we have introduced the usual ‘box normalisation’ with a box of volume 
V, (e.g. Kalltn 1958). The lz) are then given as states la, K )  with A in the state ua(x )  and 
the photon in the ‘mode’ K ,  a plane wave eigenstate of the box of energy k = Ikl. Hence 
El,) = k +Ea. The required element (IL . . .I> is given by ( ( 2 ~ ) ~ /  V)*”M(B, a ;  K ) ,  as 
may be seen from a comparison with Kalltn (1958). The last expression is ready for the 
usual transition to a ‘continuum of modes’, V + a .  To define the resulting integral 
properly we include the usual ie. So we get 

(22) 
with the definitions 

O0 m ( B , a ; k )  2 
m(A,  6; k )  := k2  1 I d 2 a  IM(A, b ;  K ) I ~ ,  EBa := P Io dk 

A = 1  k +Ea - E B 7  

rBa := .rrm(B,a;Eg-E,)O(EB-E,). (23) 
j d 2 R  denotes the integration over the angles in k-space, P denotes the Cauchy 
principal value if E B  >Ea,  and O ( x )  is the step function O ( x )  = 1 for x > 0, O ( x )  = 0 for 
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IC 

Figure 6.  ( a )  Graph of a ww theory of competing ordinary and virtual transitions in the 
presence of no photons. ( b )  Spectrum of the ‘free’ Hamiltonian @ of this theory. (c) 
Spectrum of the total Hamiltonian of this theory in dependence of the number A + 1 of lines 
included in (a ) .  The crosses mark the positions of the ‘exact’ (complex or real) eigenvalues, 
the circles mark the eigenvalues as obtained in second-order perturbation theory. The 
scales are arbitrary. In reality we have, in general, eBa >> rBA. 

x s 0. Both the integrals dk m(B, a ;  k )  and j: dk m(B, a ;  k)/k exist (11) so that all 
terms in equation (22) are finite. is typically of the order of magnitude of Lamb 
shifts, and rBa is the decay constant of the transition uB (x)+ u , ( x )  as obtained in typical 
ww theories, e.g. KallCn (1958). 

In figure 6 ( c )  the positions of the complex energies E$ = EB + 6EG are marked by 
circles denoted with the value of A. As > 0, the E$ move with increasing A for 
A > B on a parallel to the real E axis in the direction of -CO. For A = A * the complex 
eigenvalue ‘passes’ the lower end of the continuous spectrum and diverges for A + CO, cf 
Q 7. If u B ( x )  is one of the states 2SIl2, 2P1/2 the value of A *  is of the order of about lo6, 
according to the figures given in 11. 

The above transition is a continuum of modes and the inclusion of ie, though widely 
used in literature, is somewhat heuristic because the general formula (21) applies only 
to real perturbations of isolated eigenvalues. But we can solve the ‘exact’ equations 
(20) and so compare the exact result with equation (22). 

The case A = 0 of equation (20) is identical with the simplest, ordinary ww theory 
(KallCn 1958, 11) of the transition u B ( x ) +  uo(x) if EB -Eo >>€BO, cf 11. In a very good 
secondary approximation to the exact solution of equation (20) the decaying state can 
be represented by the same complex eigenvalue E: as obtained above. Weisskopf and 
Wigner (1930) have shown that the same is true for small A,  say A s A I  < B. In figure 
6(c )  we have therefore plotted exact eigenvalues, marked with crosses, near the 
corresponding perturbation circles. For small A the transitions from u B ( x )  to states of 
lower energies can be considered to be approximately independent of each other: 
Melting effects (0 1) arising from their competition are still very small. Their complete 
absence gives the characteristics of equation (22) because - irBn is a typical quantity 
related to the isolated line L[(B,  O)*(a, l)] .  

This agreement between exact and second-order perturbation results is restricted to 
small A. We shall see below that the crosses move (somehow) with increasing A 
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towards the lower end of the continuous spectrum, ‘jump’ up to the real E axis at some 
A = A th, and then move along on this axis to E = -a. In a theory of Hohler (1958) with 
comparable mathematical structure the lower end of the continuous spectrum is 
approached on a path marked in figure 6(c) with an arrow HO, A similar path can also 
be expected in our case but we shall be content to prove that the exact E$ becomes real 
for A S A t h > A * .  In 0 7 we shall show convincingly that E$ diverges for A + W .  

To prove the jump up to the real axis, we make the usual ansatz: 

{cu:(t); ( Y ? ( K ;  t), . . . , ~ P ( K ;  t))=exp(-it(Eo-~)XP:; P ? ( K ) ,  . . . , P ~ K ) }  (24) 

for a real eigenvalue at E = Eo-X,  where X 3 0  is the distance (‘gap’) between this 
eigenvalue and the lower end of the continuous spectrum. Inserting equation (24) into 
equation (20) and putting Ea -Eo =: Aa 3 0, and EB -Eo =: AB 3 0 we get 

(X + Aa + k)@y(K) = -M(B, a ; K)P:,  a = 0 , 1 ,  . . . ,  A.  (256) 

As (X+A,+k)>O we can solve (256) with respect to P ~ ( K )  and insert this into 
equation (25a). Asp: = 0 leads only to the trivial solution we assume P t  # 0. So we get 

Fg(X) exists for any A <cc as a monotonically decreasing function of X at X 3 0 .  
Therefore only one solution X = Xg of equation (26) can exist; it will exist if and only if 

AB s Fg(0). (27) 
The accidental case AB = F$(O) need not be considered. X; satisfies A B  + Xg < F t ( 0 ) .  
We show in Q 7 that F$(O) diverges for A +CO. Condition (27) is therefore always 
satisfied if A is larger than some threshold A th. If the continuation of F$(X) to negative 
X is defined by adding a term ie we get Fg(-AB) = -SE$. This means that the terms 
a 5 B in Fg(0)  are smaller than the corresponding terms in -SE$. As the few complex 
terms a < B do not count in this connection we have, in general, A th > A *. For B = 0 
we have Afh=O: in this case an eigenstate of @ + Z  always exists outside the 
continuous spectrum. 

We should consider also the corresponding eigenstate. Equation (256) yields 

Py(~)=-P:ibf(B, a ;  K)/(Xg+A,+k) (28) 

with a constant 
condition: 

with arbitrary phase, but a modulus defined by the normalisation 

a: 

Dg := f 1 dk m (B, a ; k)/(Xg + Aa + k)’ (X$ + AB)/Xg. (30) 
a=O 0 

The last inequality is obtained by replacing (Xg + Aa + k)’ by Xg(X2 + A, + k)  and 
using equation (26). It means that rig : = 1 - /P:1’ satisfies 

0 < rig < (xg + h ~ ) / ( 2 X g  + AB) < 1. (31) 
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where f ig  is the mean number of photons in the eigenstate. If the system is in this 
eigenstate, these photons can be considered as 'bound' (I, 11) because within the given 
theory they cannot be 'removed' from the atom, as any eigenstate of @+X is clearly 
stable under the interaction E. X $ +  AB is the corresponding 'binding energy' which 
increases monotonically with A. We have namely 

which is obtained by substituting for Xg+' and X g  in accordance with equation (26), 
computing the difference under the sum over a and under the k integral, and solving the 
resulting equation with respect to X $ + ' - X g .  As X;">Xg the sum in the 
denominator is smaller than Dg. So we get N ( X g  + AB)/(2X$ + AB)<  X$+' - X $  < N 
where N is the numerator in equation (32). 

It is remarkable that the 'contribution' X,^+' -Xg  of the (1 +A)th line is always 
smaller than the 'binding energy' of this line if it is considered alone as in 11. This can be 
shown by a derivation similar to equation (32). It seems that i ig  does not increase, in 
general, with increasing A,  but we shall not look at this in detail. 

We learn that the second-order perturbation theory gives correct results if and only 
if A is small. Also, as bound photons and proper eigenstates are the characteristics of 
virtual transitions (11) the appearance of a proper eigenstate of @+X for A > A t h  
means that sufficiently many virtual transitions (in our case) always win the competition 
with few ordinary Bohr transitions, In fact, the jump up to the real axis leaves not the 
slightest trace of the characteristics of ordinary Bohr transitions, i.e. the decay of the 
state l(B, 0)) and the natural linewidths for the transitions u ~ ( x ) +  u, (x) ,  a < B. Melting 
effects, which vanish in second-order perturbation theory, are very strong for large A.  
However, the discussion of 9 1 on the convergence of equation (1) applies, mutatis 
mutandis, to the present case. From the physical point of view the results for large A 
therefore must not be taken seriously, cf 9 7 .  

7. The first divergences in a Weisskopf-Wigner theory 

We consider now the limit as A + CO which is not covered by the existence theorems of I. 
We show that both F$(O) and X $  diverge, and compare this ww divergence with well 
known infinities of QED. 

As -Re E;  = Re F$(-AB)>F;(0) for large A, as F$(X)  decreases monotonically 
with increasing X > 0, and as X $  + AB = Fg(X$) we get -Re E; > Fg(O)> X g  + AB for 
large A. The 'exact' correction X g +  AB of EB is thus always smaller than the correction 
in second-order perturbation theory. The divergence of Fg(0)  and X g  is therefore not 
trivial and must be proved. 

To find lower bounds for X g  we use the following identity on the right-hand side 
of equation (26) with any 8 > 0: 

(33) 
X - X  

(X+ k + Aa)(X + k + ha) 
- 1 

8 + k + A, 
- - 1 

X + k + A0 
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to obtain 

Using equation (33) once more we get 

( A B  + X ) (  1 + L$(X) )  = F$(X)  + (X-X) ’G$(X ,  X )  + Lg(X)(As  + X) (35) 

with the abbreviations 

The solution X = X $  of eqkation (35) is of course identical with the solution of equation 
(26). As the last two terms on the right-hand side are not negative we get the first 
inequality for any X > 0:  

F$(X)/(1 +Lg(X))<AB + X $ < F $ ( X ) .  (38) 

The second inequality holds for < XG and is a trivial consequence of the monotonic 
nature of F$(x). 

> 0 whereas We show below that Fg(X)  diverges linearly like Jm dk for any X -  
L g ( X )  has a maximum logarithmic divergence like p“ dk/k for any X t 0. The former 
case includes the divergence of F$(O) whereas both cases prove that Xg has a minimum 
divergence like U“ dk)/dm dklk) .  

To prove these statements we put F$(X)  = M g ( X ) - L ’ g ( X )  with 

M$(X)  diverges linearly. To show this we substitute equation (23) and equation (5) to 
obtain : 

-ikx’ e (E(K)cY)u~(x’)  is for any k in the Hilbert space of ‘electron’ solutions of the 
Dirac equation. Therefore, the sum over a acts upon it in the limit A 00 like S(x -x‘). 
The integration over x‘ can be carried out immediately, the exponentials cancel and we 
find that ( E ( K ) ( Y ) *  = 1, and the integral over x yields 1. The remaining integral over K 

diverges linearly, as stated. To show that L ’ i ( X )  has a maximum logarithmic 
divergence we enlarge the right-hand side of equation (39) by putting Aa = 0 in the 
denominator. Then inserting equation (23) and equation (5) as above, putting 
u;(x’)Aa = u:(x’)(E, -EO) = u:(x’)(HD - EO) where HD is the Hamiltonian of the 
Dirac equation, carrying out the sum over a and the integration over x‘ as above we 
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find: 

J d3x u&)(e(K)a)  eik(HD-Eo) e-iL(e(K)CY)uB(x). 

(41) 

e’ 
k ( k  +X)* L g ( X ) s -  1 d 3 ~  

2(2.rr)3 

The contribution from Eo can be evaluated as above and diverges logarithmically. 
To get the contribution from HD we put HDe-”e(K)LYuB(X)= 
e-”(-kx + H D ) e ( ~ ) m B ( x ) .  The exponentials then cancel as before. The contribution 
from kx vanishes from symmetry arguments. The remaining integral over x satisfies 

1 I d3x ~;(x)(Q (K  )CY)HD(e ( K  (x) 1 

E ~ ( K )  and ai are the Cartesian components of e ( ~ )  and a. As ( ( K ) ’  = 1 the components 
of C ( K )  are bounded by 1. The last integrals exist, so L’$(X) has a maximum logarithmic 
divergence as stated, One can also show that it has a minimum logarithmic divergence, 
but this is not needed here. It now follows that F$(X) diverges ‘linearly’, because the 
logarithmical divergence of L‘$(X) does not count beside the linear one of M$(X) .  

To show that L$(X) has a maximum logarithmic divergence we enlarge the 
right-hand side of equation (36) by putting A, = 0. The resulting upper bound can be 
treated as equation (40), except that ( k  + X )  is replaced by ( k  +X)’ which also accounts 
for the weaker divergence. By the same argument we find that G$@, X )  converges, 
but this is not relevant here. 

The reader will have observed that equations (40) and (41) resemble certain 
‘divergences’ known from QED. A comparison with Heitler (1954) shows that the limit 
A +CO of our SE$ agrees with the contribution of the transverse photons and ‘electron’ 
solutions of the Dirac equation to the (divergent) ‘corrections’ of EB obtained if 
second-order perturbation theory is applied to the full Hamiltonian. This means that 
only the very few terms L[(B, O ) e ( a ,  l)] of equation (1) which contribute to the 
present limit A + 00 determine familar divergences of QED which are usually removed 
by renormalisation. This is why the present ww theory deserves attention. It displays 
the structure of certain divergences of QED. Firstly, a glance at figure 6(c) shows that 
second-order perturbation divergences contain an infinite methodical error. Secondly, 
the (smaller) ww divergences cannot be renormalised by an infinite, real mass term 
am$$ because this would not re-introduce the decay constants which are necessary to 
obtain emission and absorption lines at all. Thirdly, the continuous spectrum is stable 
under those terms of equation (1) which contribute at all to the second-order perturba- 
tion divergences of QED considered here. Fourthly, these divergences arise from 
physical processes which cannot play any role in any given physical situation, cf § 1, 

We learn that there are fundamental differences between perturbation theory and 
the ww approach, despite some occasional overlapping. The ww approach elucidates 
the problems of the atom-photon interaction from other angles and so provides a true 
alternative to perturbation theory. Let us consider an example. 

At the end of § 6 we had to admit that the results for large A must not be taken too 
seriously. In fact, instead of too many virtual terms L[(B,  O)*(a, l)], we would have 
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been better had we included some ordinary Bohr terms L[(A,  l ) %  (B, 2)], because, 
given A > B, the term L[(A, l)* (B, 2)] is always 'more important' than any L([B,  O)* 
(a, l ) ]  with sufficiently large a. We 'allow' thereby that the atom may return to the state 
u B ( x )  under proper emission of a photon if it has jumped virtually, i.e. under emission 
of a photon, to a state uA(x) of higher energy EA. This type of reasoning is not possible 
if perturbation theory is applied systematically to the full interaction Hamiltonian H .  
In this case, the ordering principle is violated if only a part of the terms L[(B,  O)* 
(a, l)]  is included, and this cannot be permitted without allowing that contributions 
from higher orders can be more important than non-vanishing lower-order effects. 

8. The stability of the continuous spectra in a class of Weisskopf-Wigner theories 

We show finally that 
a special case of the following theorem to be proved below. 

Theorem. @, the Hamiltonian of the case of no interaction, and @+ Z have the same 
continuous spectrum if Z is the sum of any finite number of terms of (1) of the form 

and @ + Z have indeed the same continuous spectrum. This is 

U ( b ,  O)*(a, 111. 

Proof. Consider any set of such lines. Denote the circles (6,  0) which are connected with 
at least one circle (a ,  1) by (b', 0), . . . , (b", 0) and the circles (a ,  1) which are connected 
with at least one (b, 0) by (a  ', l) ,  . . . , (U'", 1). The corresponding ww theory is defined 
essentially on the Hilbert space XI = Xt'@ . . . @%'$"O%'y10 . . . 0%':'" with ele- 
ments 

/ ( u ~ ) = ( ( u t ' ,  . . . , ( u t " ;  LYY1(K),  . . . , ( Y Y m ( K ) } .  (43) 

The rules of 5 4 yield the Schrodinger equation (again for p = 0): 

i-CXt"(t)=Eb4(utq(t)+ 1 [ d 3 ~ M * ( b q ,  a'; K ) D ~ ' ( ~ ~ ' ( K ;  t ) ,  

i-(uY'(K; t)=(Eap+k)(YY'(K; t )+ f M(bs ,  U P ;  KpSP(ut'(f), 

m 

q = 1 , .  . , , n, (44a) 
d 
dt  r = l  

d 
dt  s = l  

p = 1, . , . , m. 

(44b) 
D" is unity if the graph of Z contains the line L[(b', O)*(a', l)], and zero if this is not 
the case. The spectrum of @ consists obviously of the union of the eigenvalues at 
E = Ebl, . . . , E b n  and the union of continuous spectra extending from E,1, . . . , Earn to 
+W. The 'continuous spectrum', the 'essential spectrum' and the 'absolutely con- 
tinuous spectrum', all in the sense of Kat0 (1966), agree in the present case. 

We note that Z l a ~ )  is for any I ( ~ I ) E  2, of the form 

Zl(u~)=( Tl I d3~M*(b1 ,  a'; K ) D ' ~ C X ~ ' ( K ) ,  , . . , f d 3 ~ M * ( b n ,  a';  K)D"~c~Y'(K); 
r =  1 

f kf(bs, U'; K)DS1(ut', . . , , 
s = l  s = l  

hf(bs ,  U " ;  K ) D s m ( u t ' }  

= s = l  f [ ( r = l  f [ d 3 ~ M * ( b S ,  a'; K)D"CI~'(K)) ICi)+ag'lC;)] (45) 
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with Hilbert vectors from %'I defined for s = 1, . . . . n by 

IC;) := (0,. . . , o ;  ~ ( b ' ,  a ' ;  K ) D ~ ~ ,  . . . , ~ ( b ' ,  a m ;  K ) D ~ ~ } ,  

IC:) := (0,. . . , 0 ,1 ,0 , .  . , 0; 0 , .  . . , 0). 

(46) 

(47) 

The 1 is inserted at the sth position. Equation (45) means that the range R ( Z )  of 2 is 
spanned by the 2n vectors IC;), [CA). R ( 2 )  is therefore contained in a subspace of %'I 

whose dimension is at most 2n, i.e. finite. This means that 2 is degenerate and thus 
compact (Kato 1966, p 160). As Z is defined everywhere on 2 1  (11) and is self-adjoint, it 
is also compact relative to @ (Kato 1966, p 194) and I# and @+2 have the same 
essential spectrum (Kato 1966, p 244) which in our case agrees with the continuous 
spectrum. 

We may go a little further than this in the following way. As 2 is compact, it has a 
discrete spectrum of eigenvalues. Non-vanishing eigenvalues are of finite multiplicity. 
The eigenvalue 0 has an infinite multiplicity because all vectors of XI which are 
orthogonal to the subspace spanned by the ICs) and IC;) are eigenvectors to this 
eigenvalue. As the eigenvectors corresponding to non-vanishing eigenvalues are in 
R (E), and the dimension of R ( 2 )  is not greater than 2n, Z has at most 2n non-vanishing 
eigenvalues, each one being counted by its multiplicity. 2 is therefore in the trace class 
(Kato 1966, p 521) which means that @ and @ + E  have the same absolutely 
continuous spectrum (Kato 1966, p 540) which again agrees with the continuous 
spectrum. Moreover, there exists a waue operator (which defines the physical 'spectrum 
of observable emission and absorption lines'). 
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